If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x+140=180
We move all terms to the left:
x^2+18x+140-(180)=0
We add all the numbers together, and all the variables
x^2+18x-40=0
a = 1; b = 18; c = -40;
Δ = b2-4ac
Δ = 182-4·1·(-40)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-22}{2*1}=\frac{-40}{2} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+22}{2*1}=\frac{4}{2} =2 $
| 6(w-4)=8w=2(w+2) | | √x+4=16 | | 6/6b+5=2/b-5 | | 4x-19=7x+14 | | 2w^2+9w-5=0 | | 9-3i+1=7 | | 12y-5=8y+7 | | 4/5+v=41/20 | | 10.5x+63=-2.0x15 | | 2x+2=5-2 | | (5x/1000)=40 | | 4x-19=7x14 | | 128=-17y-22y-8y | | 55+14a=9a−55 | | 5w+2=23 | | 0,25−4x−9=16 | | 16-3x=-7x+16 | | 3/14h+2/21h=1 | | 2(x+2)-4x+10=12-x | | 6t+3(1−2t)=−5. | | 6t+3(1−2t)=−5 | | 9y-4(y=1)=31 | | 5c–15=2c+6 | | 15x-2(30+4x)=22x | | 3x+8-9=2x+7+x-8 | | −18=5x−23 | | 7x+x=7x-1 | | 8+3/4x=17 | | 3x-2(x-1)=x-2(x–1) | | 10−3x=43 | | 3/4x=17=23 | | 8d+4d-6d-4d=6 |